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Abstract

We obtain an analytical solution for two-dimensional steady-state transport of conservative
contaminant between injecting and pumping wells. Flow and transport are considered in the
vertical cross-section. The Dupuit approximation and conformal mapping onto the complex
potential domain are employed to determine the velocity and concentration distributions, respec-
tively. We use this solution to derive a priori conditions under which widely used 1-D analytical
solutions with constant velocity and dispersion coefficients provide accurate approximations.
These conditions are formulated in terms of aquifer parameters, such as hydraulic conductivity,
porosity and dispersivities, and remediation strategy, e.g., well spacing and pumping regimes.
Published by Elsevier Science B.V.
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1. Introduction

Groundwater extraction and in situ bioremediation have become popular tools for the
restoration of contaminated aquifers. Corresponding contaminant transport models must
include various physico-chemical processes, such as contaminant adsorption and desorp-
tion and biological degradation. Accounting for these phenomena makes the advection–

Ž .dispersion equation ADE hard to solve even under very restrictive flow conditions.
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While in many practical applications the geometry of flow domains is complex and fluid
velocity is nonuniform, most analytical solutions of ADE deal with one-dimensional
Ž . Ž1-D flows and constant velocities e.g., van Genuchten and Wagenet, 1989; Fry et al.,

.1993; Fry and Istok, 1994 . A brief overview of the existing analytical solutions is given
Ž .by Tartakovsky and Di Federico 1997 .

When injection and extraction wells are used to remediate an aquifer, the resulting
flow field is clearly multi-dimensional. To complicate matters further, the vertical

Ž .cross-section of the flow domain Fig. 1 is bounded from above by a phreatic surface
whose shape remains unknown until the flow problem is solved. While averaging the
velocity field in the horizontal and vertical directions is essential for the applicability of
1-D analytical solutions, the complex shape of the flow domain makes it hard to
ascertain the resulting errors.

Ž . Ž .For many two-dimensional 2-D problems, changing the Euclidean x, y coordinate
Ž .system to the curvilinear coordinate system of equipotentials, w x, y , and streamlines,

Ž . Ž . Ž .c x, y , simplifies the geometry of flow domains. Bear 1972, p. 233 called the w, c

coordinate system natural or intrinsic. In this coordinate system, a second-rank dispersiv-
Ž .ity tensor retains only two non-zero diagonal components, the longitudinal and

transverse dispersivities. Also, it is more convenient to average velocity along stream-
lines than along Euclidean coordinates, since the former has a clear physical meaning. In
particular, one can define such an averaged velocity as the distance between the
injection and extraction wells divided by the time it takes for a particle to travel this

Ž .distance Dillon, 1989 . Since both quantities are easily measured, the velocity averaged
Ž . Ž .along streamlines can be readily obtained. Conformal mappings, x, y ™ w, c , were

Ž .used to solve a variety of 2-D flow e.g., Polubarinova-Kochina, 1962; Bear, 1972 and
Ž .transport Nikolaevskij, 1990, p. 438; and Tartakovsky and Di Federico, 1997 prob-

lems.
Ž .Dillon 1989 used numerical simulations to demonstrate that, on a regional scale,

ADE with the averaged-along-streamlines velocity provides a good prediction of the
contaminant fate. In this paper, we derive rigorously the conditions under which it
becomes possible to use the averaged velocity and dispersion coefficients. We analyze

Ž Ž ..Fig. 1. Conceptual model of contaminant transport during groundwater extraction after Fry et al. 1993 .
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Žflow and transport in the cross-section between the injection and extraction wells Fig.
.1 in the following steps

1. An analytical solution for 2-D steady-state transport of conservative contaminant is
obtained. The velocity distribution and velocity-dependent dispersion coefficients are
found by solving the corresponding flow problem;

2. The same problem is solved for constant velocity and dispersion coefficients.
Comparing the two solutions provides the conditions for operating the injection and
extraction wells;

3. We demonstrate that, under these conditions, one can adopt the 1-D analytical
Ž . Ž .solutions of Fry et al. 1993 and Fry and Istok 1994 for modeling remediation of

the 2-D portion of an unconfined aquifer situated between the injection and extraction
wells.
To obtain the velocity distribution, we employ the Dupuit approximation, i.e., we

Ž .assume the flow to be essentially horizontal. Youngs 1965 demonstrated that the
discharge towards a pumping well, calculated by means of the Dupuit assumption, is

Ž .equal to the exact discharge. Dagan and Zeitoun 1998 suggested that the Dupuit
assumption leads to a shape of the water-table which differs from its exact counterpart

Ž .only in the vicinity of the well. Tartakovsky and Di Federico 1997 explored the effects
of the Dupuit approximation on the contaminant transport.

2. Statement of the problem

Steady-state transport of a conservative contaminant in the cross-section between the
Ž .injection and extraction wells Fig. 1 is described by the 2-D steady-state ADE,

=P D= C yVP= Cs0 xgABCD , 1Ž . Ž .
subject to the boundary conditions

EC xŽ .
yD quC x s0 xgABŽ .11

Ex

C x sC xgCDŽ . e

EC xŽ .
s0 xgBC

E y

nP= C x s0 xgAD. 2Ž . Ž .
w xT Ž . w xT Ž .Here xs x, y are the Euclidean space coordinates L ; =s ErEx, ErE y ; n x the

Ž .outward unit normal vector of the phreatic surface, AD; C x the contaminant concen-
Ž y3 . Ž . w Ž . Ž .xT Ž y1 . Ž < <.tration M L ; V x s u x , Õ x the seepage velocity vector LT ; and D V

the hydrodynamic dispersion coefficient, second-rank tensor with four non-zero compo-
Ž 2 y1.nents, D , L T .i j

Ž .Zero contaminant flux due to advection and dispersion across the injection well,
ŽAB, satisfies conservation of mass within the control volume, ABCD, van Genuchten
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.and Alves, 1982 . It is assumed that concentration, C , at the extraction well, CD,e

remains constant and that there is no mass flux across either the impermeable base, BC,
or the water-table, AD.

Ž . Ž .Steady-state seepage velocity distribution, V x sq x rn where q is the Darcy’s flux
Ž y1 .LT and n the porosity, is determined from Darcy’s law and mass conservation,

q x syK= h x sw x =Pq x s0 xgABCD 3Ž . Ž . Ž . Ž . Ž .
Ž .subject to the boundary conditions Polubarinova-Kochina, 1962, p. 33

w x syKH xgABŽ . i

w x syKH xgCDŽ . e

c x s0 xgBCŽ .
w x qKys0 c x sQ xgAD. 4Ž . Ž . Ž .

Ž y1 . Ž . Ž .Here K is the uniform hydraulic conductivity LT ; h x the hydraulic head L ; Hi

and H the hydraulic heads at the injection, AB, and extraction, CD, wells, respectively;e
Ž 2 y1. Ž . Ž .Q the total water discharge per unit width L T ; w x syKh x the velocity

Ž .potential function; and c x the stream-function. Advantages and disadvantages of
prescribing head rather than pumping rates at the wells are discussed by Indelman et al.
Ž .1996 .

Ž 2 .We now introduce complex variables zsxq iy and wswq ic i sy1 for the
Ž .physical and complex potential planes, respectively. Then it follows from Eq. 4 that

Ž .the flow region ABCD of the physical plane corresponds to the rectangle G Fig. 2 inw

the complex potential plane. In the complex potential plane, the boundary-value problem
Ž . Ž . Ž .1 – 2 takes the form Bear, 1972, p. 620

E EC E EC EC
D q D y s0 w ,c gG 5Ž . Ž .L T wž / ž /Ew Ew Ew Ew Ew

subject to

E C wcŽ .
yD qC w ,c s0 wsyKHŽ .L i

Ew

C w ,c sC wsyKHŽ . e e

EC wcŽ .
s0 cs0

Ec

EC w ,cŽ .
s0 csQ. 6Ž .

Ec

Ž . Ž .Here D x and D x are the longitudinal and transverse dispersion coefficients,L T
Ž 2 y1.respectively L T . Assuming that effects of molecular diffusion are smaller than

those caused by convection, the dispersion coefficients are given by

D x sl V x D x sl V x 7Ž . Ž . Ž . Ž . Ž .L L T T
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Fig. 2. Complex potential domain.

Ž . < Ž . <where V x s V x , and l and l are the longitudinal and transverse dispersivities,L T
Ž . Ž . Ž .respectively L . It follows from Eqs. 3 and 4 that V is not constant, and neither are

D and D .L T

3. An analytical solution

We now assume that aquifer thickness is small compared with the distance, L,
between the injection, AB, and extraction, CD, wells, so that the Dupuit assumption
remains valid. As was discussed earlier, the Dupuit approximation affects the accuracy
of the solutions only in the vicinity of the well. Since during aquifer remediation one is
mostly concerned with the amount of contaminant removed from the ground, we feel
comfortable to employ this approximation.

Ž . Ž .Under the Dupuit assumption, the boundary value problem 3 – 4 has the solution
Ž .known as the Dupuit–Forchheimer discharge formula Bear, 1972, p. 366 ,

K H 2 yH 2 2Q QŽ .i e 2 2Qs h x sy xqH Vs . 8Ž . Ž .i2 L K nh
Ž .Recalling that wsyKh and substituting the expression for V into Eq. 5 yields

Q E 1 EC Q E2 C 1 EC
l ql q s0 h ,c gG . 9Ž . Ž .L T w2 2ž /Eh h E h nh K E hnK Ec

Ž . Ž .Due to the last two boundary conditions in Eq. 6 , Eq. 9 becomes
Q E 1 EC EC

l q s0 H -h-H . 10Ž .L e iž /nK Eh h Eh Eh

Using the transformation zsh2 yields

d2 C
U

z dC
U

zŽ . Ž .
2 2qa s0 H -z-H 11Ž .e i2 d zd z

subject to

dC
U

zŽ . U 2qaC z s0 zsHŽ . id z

C
U

z s1 zsH 2 . 12Ž . Ž .e
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U y1 Ž . Ž .Here C sCrC and a s2 Ql rnK. The solution of Eqs. 11 and 12 ise L

n hU 2 y12 2U aŽH yh .eC h se sexp y 13Ž . Ž .U U 2ž /D H y1

where hU shrH , HU sH rH , and DU sD rVL is the dimensionless mechanicale i e L

dispersion coefficient.
ŽUnder different field scenarios, similar solutions were derived by Nikolaevskij 1990,

. Ž .p. 438 and Tartakovsky and Di Federico 1997 . The latter authors demonstrated that
the applicability of the Dupuit approximation to the contaminant transport is restricted to
the ratios l rl -0.1.T L

4. Comparison with the constant coefficients solution

U Ž .We now compare C in Eq. 13 with the concentration profile, C , obtained by theav
Ž .velocity averaging. For each streamline, Dillon 1989 defined the averaged velocity as

the distance, L, between the injection and extraction wells, divided by the experimen-
Ž .tally determined time of travel residence time . In a similar spirit, we define our

Ž .averaged velocity from the Darcy’s law, q sK H yH rL and V sq rn. Whereasav i e av av
Ž .Dillon 1989 assumed dispersion coefficients D and D to be constant and indepen-L T

Ž .dent from V, we define our averaged dispersion coefficients in accordance with Eq. 7 ,
D sl V where isL or T.i i avav

Ž .By virtue of the argument leading to Eq. 10 , substituting V , D , and D intoav L Tav av

Ž . Ž .Eqs. 5 and 6 yields

d2 C
U

dC
U

av av
yb s0 yKH -w-KH 14Ž .i e2 dwdw

subject to

dC
U

wŽ .av UybC w s0 wsyKHŽ .av idw

CU
w s1 wsyKH 15Ž . Ž .aÕ e

U y1 Ž .where C sC rC and b sl K H yH rnL. Since wsyKh,av av e L i e

n h
U y1

U
C h sexp y . 16Ž . Ž .U Už /D H y1

U Ž .Fig. 3 compares the dimensionless concentration distributions, C , bold lines with
U U Ž UC for nrD s4.0 ns0.4 and D s0.1, typical values of porosity and dimension-av

Ž ..less mechanical dispersion coefficient, respectively Domenico and Schwartz, 1990
Ž .and several values of the ratio H rH . For any pumping regime any H rH , Ci e i e av

underestimates the actual concentration distribution C. The accuracy of the averaged
velocity solution, C , deteriorates as the ratio between hydraulic heads, H and H , asav i e

the injection and extraction wells increases. It is to be expected, however, since high
hydraulic gradients make the validity of the Dupuit approximation questionable.
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Ž .Fig. 3. Normalized concentration distributions for the variable bold lines and averaged velocity and
dispersivities. Here ns0.4, DU s0.1, and HU s H rH .i e

Ž .Fig. 4 shows the relative error, EEs CyC rC, introduced by the averaging ofav

velocity and dispersion coefficients. Here the ratio between hydraulic heads at the

Ž . UFig. 4. Relative error, EE s CyC rC, introduced by averaging velocity and dispersivities for H s2.0 andav

several values of the ratio nrDU.
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injection and extraction wells is kept constant, H rH s2.0, while nrDU varies. Iti e

follows from Figs. 3 and 4 that the smaller the ratio nrDU , the higher the hydraulic
gradients are allowed for C to remain a reasonable approximation of C. This analysisav

Žshows that for any given aquifer characterized by hydraulic conductivity, K , porosity,
.n, and dispersivity coefficients, l and l it is possible to choose a priori aL T

Žremediation strategy i.e., the spacing between the injection and extraction wells, L, and
.the pumping regime, H and H such that C is a good approximation of C.i e av

5. Application to in situ bioremediation

We now apply our results to demonstrate the applicability of the 1-D analytical
Ž . Ž .solutions by Fry et al. 1993 and Fry and Istok 1994 for modeling in situ bioremidia-

tion of a portion of the aquifer depicted on Fig. 1. Consider 2-D contaminant transport
Ž .with rate-limited desorption and decay in the aqueous phase Fry et al., 1993 ,

EC r ESb
q s=P D= C yVP= CymCŽ .

Et u Et

ES
sa K CyS xgABCD 17Ž . Ž .d

Et

subject to the initial,

C x,0 sC S x,0 sS S sK C xgABCD , 18Ž . Ž . Ž .0 0 0 d 0

and boundary,

EC x,tŽ .
yD quC x,t s0 xgABŽ .11

Ex

EC x,tŽ .
s0 xgCD

Ex

EC x,tŽ .
s0 xgBC

E y

nP= C x,t s0 xgAD , 19Ž . Ž .
Ž . Ž . Ž y3 .conditions. Here t is time T ; C x, t the aqueous concentration M L ; C the0

Ž . Ž 3 y3.aqueous concentration at ts0; S x, t the sorbed concentration M M ; S the0
Ž y3 .sorbed concentration at ts0; r the bulk density M L , u the volumetric waterb

Ž 3 y3. Ž y1 .content L L ; m the first-order decay rate coefficient T ; a the first-order
Ž y1 . Ž 3desorption rate coefficient T ; and K the equilibrium distribution coefficient Ld

y1 .M .
Ž . Ž .To obtain their analytical solutions, Fry et al. 1993 and Fry and Istok 1994 made

Ž . Ž .two simplifying assumptions. They i ignored spatial variations in the vertical y
Ž .direction, and ii used velocity and dispersion coefficients averaged in the horizontal
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Ž .x direction. As should become clear from the preceding discussion, none of these
Ž . Ž .assumptions can be easily justified. Instead, we rewrite Eqs. 17 – 19 for the complex

potential domain,

EC r ES E EC E EC ECb 2q sV D q D y ymCL Tž / ž /Et u Et Ew Ew Ec Ec Ew

ES
sa K CyS w ,c gG 20Ž . Ž . Ž .d w

Et

subject to

C x,0 sC S x,0 sS S sK C w ,c gGŽ . Ž . Ž .0 0 0 d 0 w

EC w ,c ,tŽ .
yD qC w ,c ,t s0 wsyKHŽ .L i

Ew

EC w ,c ,tŽ .
s0 wsyKHe

Ew

EC w ,c ,tŽ .
s0 cs0

Ec

EC w ,c ,tŽ .
s0 csQ. 21Ž .

Ec

We now assume that hydraulic heads at the injection and extraction wells, H and Hi e

are such that the conditions derived in the previous section are satisfied. Then it is
possible to employ the averaged-along-streamlines velocity and dispersion coefficients.

Ž .For constant V , D and D , Eq. 20 and the last two boundary conditions in Eq.av L Tav av

Ž . Ž . Ž .21 suggest that ECrEcs0. Then Eqs. 20 and 21 reduce to

2EC r ES E C ECb 2q sV D y ymCav L 2avEt u Et EwEw

ES
sa K CyS yKH -w-KH 22Ž . Ž .d i e

Et

subject to

C w ,0 sC S w ,0 sS S sK C yKH -w-KHŽ . Ž .0 0 0 d 0 i e

EC w ,tŽ .
yD qC w ,t s0 wsyKHŽ .L iav Ew

EC w ,tŽ .
s0 wsyKH . 23Ž .e

Ew
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Introducing dimensionless variables and parameters, CU sCrC , SU sSrS , g
U s0 0

U U U U Ž . U Žr K ru , m smLrV , a saLrV , t s tLrV, w swr V L , w sKH r Vb d av av av i i av
. U Ž .L , and w sKH r V L , yieldse e av

ECU ESU E2 CU ECU

U U U Uqg sD y ym CU U UU 2Et Et EwEw

ESU

U U U U U Usa C yS yw -w -w 24Ž . Ž .i eUEt

subject to

CU
w

U ,0 s1 SU
w

U ,0 s1 yw
U -w

U -w
UŽ . Ž . i e

ECU
w

U ,tUŽ .
U U U U U UyD qC w ,t s0 w sywŽ . iUEw

ECU
w

U ,tUŽ .
U Us0 w syw . 25Ž .eUEw

Ž . Ž . Ž . Ž .We further notice that Eqs. 24 and 25 are the same as Eqs. 6 and 9 of Fry et al.
Ž . U U Ž . Ž .1993 with x replaced by w . Hence the analytical solution of Eqs. 24 and 25 ,

U Ž U . Ž . Ž .C w ,t , is given by their Eqs. 40 – 43 . The advantages of using our solution are
Ž .twofold: i all assumptions and limitations necessary for deriving our solution are

Ž . U Ž U .clearly stated and are easy to verify; and ii while being one-dimensional, our C w ,t
represents the solution of the 2-D ADE. Moreover, evaluation of the total mass of the
contaminant removed from the portion of an aquifer, ABCD, is now straightforward.

6. Summary

We considered contaminant transport between the injection and extraction wells
during aquifer remediation. The problem was analyzed in the vertical cross-section

Ž .passing through the wells. Employing i the Dupuit assumption to evaluate velocity
Ž .distribution and ii conformal mapping onto the complex potential domain, we derived

Ž .the analytical solution, C, for the two-dimensional advection–dispersion equation ADE
with space-variable velocity, V, and velocity-dependent dispersion coefficients, D andL

D .T

Our analytical solution was then used to ascertain the validity of the commonly used
Ž .approach, wherein constant averaged velocity, V , and dispersion coefficients, DaÕ L av

and D , are used to simplify mathematical analysis of various transport phenomena.Tav

We demonstrated that the solution, C , of ADE with the averaged coefficients, V ,av av

D and D , underestimates the ‘‘true’’ solution, C. Given aquifer parametersL Tav av

Žhydraulic conductivity, K , porosity, n, and longitudinal and transverse dispersivities,
. Žl and l and remediation strategy spacing between the injection and extractionL T

.wells, L, and hydraulic heads at the wells, H and H , the accuracy of the approximatei e
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solution, C , can be assessed a priori. Alternatively, for any given aquifer, one canav

choose a remediation strategy which can be modeled by simple one-dimensional
analytical solutions.
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